Issue 4, 2013

Electronic properties of tetrakis(pentafluorophenyl)porphyrin

Abstract

We studied in detail the electronic properties of C44H10F20N4 (tetrakis(pentafluorophenyl)porphyrin, hereafter H2TPP(F)) via a combined study by photoelectron spectroscopy (PES) and density functional (DF) calculations, shedding new light on the role of the halide in this very interesting molecule for organic electronics. Valence and core levels have been investigated by means of PES on H2TPP(F) thin films deposited on the SiO2/Si(100) native oxide surface by supersonic molecular beam deposition (SuMBD). These experiments have been carefully interpreted on the basis of DF results pertaining to the isolated H2TPP(F). Non-relativistic calculations have been run to investigate valence states, whereas a two component relativistic approach within the zeroth-order regular approximation has been adopted to study core levels. The present results, in conjunction with those obtained previously on the H2TPP parent compound [M. Nardi, R. Verucchi, C. Corradi, M. Pola, M. Casarin, A. Vittadini and S. Iannotta, Phys. Chem. Chem. Phys., 2010, 12, 871], pave the way towards designing fully organic p–n junctions by using these macrocycles.

Graphical abstract: Electronic properties of tetrakis(pentafluorophenyl)porphyrin

Article information

Article type
Paper
Submitted
10 Oct 2012
Accepted
15 Jan 2013
First published
16 Jan 2013

New J. Chem., 2013,37, 1036-1045

Electronic properties of tetrakis(pentafluorophenyl)porphyrin

M. Nardi, R. Verucchi, L. Aversa, M. Casarin, A. Vittadini, N. Mahne, A. Giglia, S. Nannarone and S. Iannotta, New J. Chem., 2013, 37, 1036 DOI: 10.1039/C3NJ40910D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements