Issue 11, 2013

In silico study on multidrug resistance conferred by I223R/H275Y double mutant neuraminidase

Abstract

It was recently reported that an I223R/H275Y double mutant of neuraminidase (NA) creates a multidrug-resistant form of the pandemic influenza A (H1N1) virus. However, a comprehensive understanding of the molecular mechanisms is still lacking. We conducted a systematic in silico study to explore the structural basis underlying this multidrug resistance. By molecular docking analyses and molecular dynamics (MD) simulations, we compared various biochemical and biophysical properties of the wild type, the I223R single mutant and the I223R/H275Y double mutant NA with two inhibitors, zanamivir (ZMR) and oseltamivir (G39). The binding free energy of oseltamivir with all types of NA was substantially lower than its zanamivir counterpart. On the other hand, the binding free energy of each inhibitor with wild type NA was generally higher than that with mutant NAs. MD simulation outcomes exemplify distinct patterns for oseltamivir and zanamivir with all types of NA. In particular, the stronger resistance of the double mutant NA relative to the wild and single mutant types can be ascribed to the overall looser but locally more compact structure of the former. Specifically, as a whole the double mutant NA adapts to the larger gyration radius and greater distance between charged atom groups, which is contrary to the pattern in the local binding site region. The enhanced resistance of all types of NA to oseltamivir rather than zanamivir might be accounted for similarly. We expect these findings to provide significant insights into improving inhibitors for the multidrug-resistant neuraminidase of H1N1 influenza viruses.

Graphical abstract: In silico study on multidrug resistance conferred by I223R/H275Y double mutant neuraminidase

Article information

Article type
Paper
Submitted
27 Jun 2013
Accepted
08 Aug 2013
First published
09 Aug 2013

Mol. BioSyst., 2013,9, 2764-2774

In silico study on multidrug resistance conferred by I223R/H275Y double mutant neuraminidase

H. Tan, K. Wei, J. Bao and X. Zhou, Mol. BioSyst., 2013, 9, 2764 DOI: 10.1039/C3MB70253G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements