Issue 6, 2013

Delay-managed tradeoff in the molecular dynamics of the segmentation clock

Abstract

The molecular segmentation clock is a complex regulatory network that governs the periodic somite segmentation in vertebrate embryos. Underlying the rhythm of the segmentation clock is a single-cell level pace-making circuit, where inevitable molecular noise and time delay impose normal operating constraints to the pace-making. However, how the molecular mechanisms of the core circuit of the segmentation clock coordinate the operating constraints and maintain the rhythmic nature of the developmental process remains poorly understood. To address this question, we construct two biologically-motivated mathematical models with multiple clock protein transcription binding sites, with differential or rate-limited decay rates for protein monomers and dimers. We demonstrate that the rate-limited decay significantly enlarges the parameter space of noise-induced and delay-induced oscillations. Interestingly, focusing on the stochastic characters of noise-induced and delay-induced oscillations in terms of phase coherence and phase averaged amplitude noise in the polar coordinate, we find that there is a delay-managed tradeoff between phase coherence and phase averaged amplitude noise. In particular, the model with both multiple binding sites and rate-limited decay can show regular tunability as the delay increases. Our results indicate that transcriptional and post-translational mechanisms constrain the combined effects of noise and delay on the molecular dynamics of the segmentation clock.

Graphical abstract: Delay-managed tradeoff in the molecular dynamics of the segmentation clock

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2012
Accepted
28 Feb 2013
First published
28 Feb 2013

Mol. BioSyst., 2013,9, 1436-1446

Delay-managed tradeoff in the molecular dynamics of the segmentation clock

H. Song, Z. Yuan and T. Zhou, Mol. BioSyst., 2013, 9, 1436 DOI: 10.1039/C3MB70046A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements