Issue 7, 2013

A disease-drug-phenotype matrix inferred by walking on a functional domain network

Abstract

Protein domains are classified as units of structure, evolution and function, and thus form the molecular backbone of biosphere. Although functional networks at the protein level have been reported to be of value in predicting diseases (phenotypes or drugs), they have not previously been applied at the sub-protein resolution (protein domain in this case). We herein introduce a domain network with a functional perspective. This network has nodes consisting of protein domains (at the superfamily/evolutionary level), with edges weighted by the semantic similarity according to domain-centric Gene Ontology (dcGO) annotations, which henceforth we call “dcGOnet”. By globally exploring this network via a random walk, we demonstrate its predictive value on disease, drug, or phenotype-related ontologies. On cross-validation recovering ontology labels for domains, we achieve an overall area under the ROC curve of 89.0% for drugs, 87.3% for diseases, 87.6% for human phenotypes and 88.2% for mouse phenotypes. We show that the performance using global information from this network is significantly better than using local information, and also illustrate that the better performance is not sensitive to network size, or the choice of algorithm parameters, and is universal to different ontologies. Based on the dcGOnet and its global properties, we further develop an approach to build a disease-drug-phenotype matrix. The predicted interconnections are statistically supported using a novel randomization procedure, and are also empirically supported by inspection for biological relevance. Most of the high-ranking predictions recover connections that are well known, but others uncover connections that have only suggestive or obscure support in the literature; we show that these are missed by simpler methods, in particular for drug-disease connections. The value of this work is threefold: we describe a general methodology and make the software available, we provide the functional domain network itself, and the ranked drug-disease-phenotype matrix provides rich targets for investigation. All three can be found at http://supfam.org/SUPERFAMILY/dcGO/dcGOnet.html.

Graphical abstract: A disease-drug-phenotype matrix inferred by walking on a functional domain network

Supplementary files

Article information

Article type
Paper
Submitted
01 Nov 2012
Accepted
26 Feb 2013
First published
26 Feb 2013

Mol. BioSyst., 2013,9, 1686-1696

A disease-drug-phenotype matrix inferred by walking on a functional domain network

H. Fang and J. Gough, Mol. BioSyst., 2013, 9, 1686 DOI: 10.1039/C3MB25495J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements