Issue 14, 2013

Magnetically actuated artificial cilia for optimum mixing performance in microfluidics

Abstract

Contemporary lab-chip devices require efficient, high-performance mixing capability. A series of artificial cilia with embedded magnetic particles was fabricated to achieve precise flow manipulation through magnetically driven control. These fabricated structures were actuated in a homogeneous magnetic field generated by a built-in magnetic coil system for various beating cycles inside a microchannel. Three representative trajectories, namely, circular motion, back-and-forth oscillation, and a figure-of-eight pattern, of artificial cilia were designed and generated to mimic the motion of actual cilia. Homogeneous mixing of two highly viscous (>25 centipoise) dyed solutions by using the figure-of-eight trajectory achieved a mixing efficiency of approximately 86%. The underlying relationship between ciliated structures and the induced flow fields was further elucidated by performing a hydrodynamic analysis with micro-particle image velocimetry. In addition, a numerical modeling method which used a fluid structure interaction module was applied to provide quantitative 3D illustrations of induced flow patterns, including vortical structures and vortex core locations. The results reveal that both the magnitude and distribution of induced vortices primarily affect the mixing performance of two viscous flow streams. By using magnetically controlled artificial cilia along with the presented analytical paradigms, a new active flow mixing strategy was suggested to efficiently transport/agitate flows for microfluidics and biomedical applications.

Graphical abstract: Magnetically actuated artificial cilia for optimum mixing performance in microfluidics

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2013
Accepted
17 Apr 2013
First published
19 Apr 2013

Lab Chip, 2013,13, 2834-2839

Magnetically actuated artificial cilia for optimum mixing performance in microfluidics

C. Chen, C. Chen, C. Lin and Y. Hu, Lab Chip, 2013, 13, 2834 DOI: 10.1039/C3LC50407G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements