Issue 7, 2013

From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis

Abstract

The extraction and amplification of DNA from biological samples is laborious and time-consuming, requiring numerous instruments and sample handling steps. An integrated, single-use, poly(methyl methacrylate) (PMMA) microdevice for DNA extraction and amplification would benefit clinical and forensic communities, providing a completely closed system with rapid sample-in-PCR-product-out capability. Here, we show the design and simple flow control required for enzyme-based DNA preparation and PCR from buccal swabs or liquid whole blood samples with an ∼5-fold reduction in time. A swab containing cells or DNA could be loaded into a novel receptacle together with the DNA liberation reagents, heated using an infrared heating system, mixed with PCR reagents for one of three different target sets under syringe-driven flow, and thermally-cycled in less than 45 min, an ∼6-fold reduction in analysis time as compared to conventional methods. The 4 : 1 PCR reagents : DNA ratio required to provide the correct final concentration of all PCR components for effective amplification was verified using image analysis of colored dyes in the PCR chamber. Novel single-actuation, ‘normally-open’ adhesive valves were shown to effectively seal the PCR chamber during thermal cycling, preventing air bubble expansion. The effectiveness of the device was demonstrated using three target sets: the sex-typing gene Amelogenin, co-amplification of the β-globin and gelsolin genes, and the amplification of 15 short tandem repeat (STR) loci plus Amelogenin. The use of the integrated microdevice was expanded to the analysis of liquid blood samples which, when incubated with the DNA liberation reagents, form a brown precipitate that inhibits PCR. A simple centrifugation of the integrated microchips (on a custom centrifuge), mobilized the precipitate away from the microchannel entrance, improving amplification of the β-globin and gelsolin gene fragments by ∼6-fold. This plastic integrated microdevice represents a microfluidic platform with potential for evolution into point-of-care prototypes for application to both clinical and forensic analyses, providing a 5-fold reduction from conventional analysis time.

Graphical abstract: From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis

Article information

Article type
Paper
Submitted
03 Dec 2012
Accepted
25 Jan 2013
First published
31 Jan 2013

Lab Chip, 2013,13, 1384-1393

From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis

J. A. Lounsbury, A. Karlsson, D. C. Miranian, S. M. Cronk, D. A. Nelson, J. Li, D. M. Haverstick, P. Kinnon, D. J. Saul and J. P. Landers, Lab Chip, 2013, 13, 1384 DOI: 10.1039/C3LC41326H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements