Issue 4, 2013

Measuring nonequilibrium vesicle dynamics in neurons under tension

Abstract

Vesicle transport in neurons is a highly complex nonequilibrium process. Their subcellular environment is undergoing constant fluctuations from thermal energy and molecular motors. Vesicle transport is an interplay between random motion (passive) and directed motion (active) driven by molecular motors along cytoskeletal filaments. It has been shown that growth, guidance, and vesicle dynamics of neurons is affected by mechanical tension. Here we present a method to analyze vesicle transport via a temporal Mean Square Displacement (tMSD) analysis while applying mechanical strain to neurons. The tMSD analysis allows characterization of active and passive vesicle motion as well as many other parameters including: power law scaling, velocity, direction, and flux. Our results suggest: (1) The tMSD analysis is able to capture vesicle motion alternating between passive and active states, and indicates that vesicle motion in Aplysia neurons is primarily passive (exhibiting active motion for ∼8% of the time). (2) Under mechanical stretch (increased neurite tension), active transport of vesicles increases to ∼13%, while vesicle velocity remains unchanged. (3) Upon unstretching (decreased tension), the level of active transport returns to normal but vesicle velocity decreases. These results suggest that vesicle transport in neurons is highly sensitive to mechanical stimulation. Our method allows precise characterization of vesicle dynamics in response to applied mechanical strain.

Graphical abstract: Measuring nonequilibrium vesicle dynamics in neurons under tension

Article information

Article type
Paper
Submitted
02 Oct 2012
Accepted
06 Dec 2012
First published
07 Dec 2012

Lab Chip, 2013,13, 570-578

Measuring nonequilibrium vesicle dynamics in neurons under tension

W. W. Ahmed, B. J. Williams, A. M. Silver and T. A. Saif, Lab Chip, 2013, 13, 570 DOI: 10.1039/C2LC41109A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements