Issue 11, 2013

Brewers' spent grain (BSG) protein hydrolysates decrease hydrogen peroxide (H2O2)-induced oxidative stress and concanavalin-A (con-A) stimulated IFN-γ production in cell culture

Abstract

The present study investigated the bioactivity of protein hydrolysates and fractionated hydrolysates prepared from brewers' spent grain (BSG) using proteases, including Alcalase 2.4L, Flavourzyme and Corolase PP. Hydrolysates were designated K–Y, including fractionated hydrolysates with molecular weight (m.w.) < 3, <5 and >5 kDa. Where computable, IC50 values were lower in U937 (1.38–9.78%) than Jurkat T cells (1.15–13.82%). Hydrolysates L, Q and R and fractionated hydrolysates of U and W (<3, <5, >5 kDa) significantly (P < 0.01) protected against hydrogen peroxide (H2O2)-induced reduction of superoxide dismutase (SOD) activity. A fractionated hydrolysate of W (<5 kDa) protected against H2O2-induced DNA damage, P < 0.01. Hydrolysates K, N, P, U, U > 5 kDa, V, V > 5 kDa, W, W > 5 kDa significantly (P < 0.05) reduced a concanavlin-A (con-A) stimulated production of interferon-γ (IFN-γ). In conclusion, BSG protein hydrolysates demonstrate bioactivity in vitro; lower m.w. hydrolysates (<3, <5 kDa) show greatest antioxidant activity and unfractionated or higher m.w. hydrolysates (>5 kDa) possess anti-inflammatory effects.

Graphical abstract: Brewers' spent grain (BSG) protein hydrolysates decrease hydrogen peroxide (H2O2)-induced oxidative stress and concanavalin-A (con-A) stimulated IFN-γ production in cell culture

Article information

Article type
Paper
Submitted
23 May 2013
Accepted
30 Sep 2013
First published
01 Oct 2013

Food Funct., 2013,4, 1709-1716

Brewers' spent grain (BSG) protein hydrolysates decrease hydrogen peroxide (H2O2)-induced oxidative stress and concanavalin-A (con-A) stimulated IFN-γ production in cell culture

A. L. McCarthy, Y. C. O'Callaghan, A. Connolly, C. O. Piggott, R. J. FitzGerald and N. M. O'Brien, Food Funct., 2013, 4, 1709 DOI: 10.1039/C3FO60191A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements