Issue 4, 2013

The influence of hard substratum reflection and calibration profiles on in situ fluorescence measurements of benthic microalgal biomass

Abstract

Measuring chlorophyll-a fluorescence is a commonly used method to determine microphytobenthic biomass expressed as chlorophyll-a per square centimetre. However, this in situ method is affected by reflection from the substratum which triggers an additional fluorescence signal within the microphytobenthic biofilm. Depending on the colour and texture of the natural substratum, this effect can lead to a considerable overestimation of microphytobenthic biomass. The results cannot be corrected for this effect by performing an auto-zero measurement, since the overestimation is not caused by an offset of the fluorometer. This article describes a substratum-specific correction procedure using a 700 nm signal to eliminate this effect by quantifying the fluorescence signal as a result of the reflection. An empirical relationship between the 700 nm signal and the additional fluorescence is used to calculate a correction factor for the reflective properties of the substratum. The factor is determined and applied during each biomass measurement, thereby making an additional calibration step for each individual type of substratum superfluous. This new method improves the reliability of the results significantly without increasing the time necessary to perform the measurements and without complicating the measurement procedure.

Graphical abstract: The influence of hard substratum reflection and calibration profiles on in situ fluorescence measurements of benthic microalgal biomass

Article information

Article type
Paper
Submitted
05 Aug 2012
Accepted
22 Jan 2013
First published
22 Jan 2013

Environ. Sci.: Processes Impacts, 2013,15, 783-793

The influence of hard substratum reflection and calibration profiles on in situ fluorescence measurements of benthic microalgal biomass

C. Carpentier, A. Dahlhaus, N. van de Giesen and B. Maršálek, Environ. Sci.: Processes Impacts, 2013, 15, 783 DOI: 10.1039/C3EM30654B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements