Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes†
Abstract
Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM2.5–10), and fine (PM0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest
- This article is part of the themed collection: Anthropogenic nanoparticles in the environment