Issue 6, 2013

Photoinitiated multi-step charge separation and ultrafast charge transfer induced dissociation in a pyridyl-linked photosensitizer–cobaloxime assembly

Abstract

Using visible and near-infrared transient absorption spectroscopy to track distinct excited state, cation, and anion signals, we report a detailed kinetic analysis of photoinitiated multi-step charge separation and ultrafast charge transfer induced dissociation in a self-assembled donor–bridge–acceptor–cobaloxime triad. The donor–bridge–acceptor ligand consists of a perylene chromophore linked via a xylene bridge to a pyridyl-substituted 1,8-naphthalimide electron acceptor. Coordination of the ligand to the catalyst [Co(dmgBF2)2(L)2], where dmgBF2 = (difluoroboryl)dimethylglyoximato and L = water or a solvent molecule, yields a donor–bridge–acceptor–catalyst triad assembly. Photoexcitation with 416 nm laser pulses generates the perylene S1 excited state. Subsequent electron transfer from perylene to the acceptor occurs in τ = 9.0 ± 0.1 ps followed by electron transfer to the catalyst in τ = 6 ± 1 ps. Of the charge-separated state population formed, 79 ± 1% undergoes charge recombination to either the singlet ground state (τ = 0.8 ± 0.1 ns) or the perylene triplet state (τ = 4.3 ± 0.1 ns). Co(I)-pyridyl bond dissociation with τ = 2.4 ± 0.2 ns competes with intramolecular charge recombination resulting in a 21 ± 1% yield of dissociated oxidized photosensitizer and reduced catalyst. Subsequent diffusional charge recombination occurs with k = (1.8 ± 0.2) × 1010 M−1 s−1. This detailed analysis of the electron transfer and dissociation dynamics of an integrated photosensitizer–catalyst system will inform the rational design of novel molecular assemblies that efficiently absorb photons, transfer electrons, and catalyze fuel-forming reactions.

Graphical abstract: Photoinitiated multi-step charge separation and ultrafast charge transfer induced dissociation in a pyridyl-linked photosensitizer–cobaloxime assembly

Supplementary files

Article information

Article type
Paper
Submitted
02 Feb 2013
Accepted
18 Apr 2013
First published
19 Apr 2013

Energy Environ. Sci., 2013,6, 1917-1928

Photoinitiated multi-step charge separation and ultrafast charge transfer induced dissociation in a pyridyl-linked photosensitizer–cobaloxime assembly

B. S. Veldkamp, W. Han, S. M. Dyar, S. W. Eaton, M. A. Ratner and M. R. Wasielewski, Energy Environ. Sci., 2013, 6, 1917 DOI: 10.1039/C3EE40378E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements