Issue 6, 2013

Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production

Abstract

The conductive biofilms of Geobacter sulfurreducens have potential applications in renewable energy, bioremediation, and bioelectronics. In an attempt to alter biofilm properties, genes encoding proteins with a PilZ domain were deleted from the G. sulfurreducens genome. A strain, in which the gene GSU1240 was deleted, designated strain CL-1, formed biofilms much more effectively than did the wild-type strain. Increased production of pili and exopolysaccharide were associated with the enhanced biofilm production. When grown with an electrode as the electron acceptor CL-1 produced biofilms that were 6-fold more conductive than wild-type biofilms. The greater conductivity lowered the potential losses in microbial fuel cells, decreasing the charge transfer resistance at the biofilm–anode surface by ca. 60% and lowering the formal potential by 50 mV. These lower potential losses increased the potential energy of electrons reaching the biofilm–anode interface and enabled strain CL-1 to produce 70% higher power densities than the wild-type strain. Current-producing biofilms were highly cohesive and could be peeled off graphite electrodes intact, yielding a novel conductive biological material. This study demonstrates that simple genetic manipulation can yield improved bioelectronics materials with energy applications.

Graphical abstract: Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production

Supplementary files

Article information

Article type
Paper
Submitted
06 Feb 2013
Accepted
19 Apr 2013
First published
22 Apr 2013

Energy Environ. Sci., 2013,6, 1901-1908

Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production

C. Leang, N. S. Malvankar, A. E. Franks, K. P. Nevin and D. R. Lovley, Energy Environ. Sci., 2013, 6, 1901 DOI: 10.1039/C3EE40441B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements