Issue 4, 2013

Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases

Abstract

We have synthesized and characterized a new metal–organic framework (MOF) material, NU-125, that, in the single-crystal limit, achieves a methane storage density at 58 bar (840 psi) and 298 K corresponding to 86% of that obtained with compressed natural gas tanks (CNG) used in vehicles today, when the latter are pressurized to 248 bar (3600 psi). More importantly, the deliverable capacity (58 bar to 5.8 bar) for NU-125 is 67% of the deliverable capacity of a CNG tank that starts at 248 bar. (For crystalline granules or powders, particle packing inefficiencies will yield densities and deliverable capacities lower than 86% and 67% of high-pressure CNG.) This material was synthesized in high yield on a gram-scale in a single-batch synthesis. Methane adsorption isotherms were measured over a wide pressure range (0.1–58 bar) and repeated over twelve cycles on the same sample, which showed no detectable degradation. Adsorption of CO2 and H2 over a broad range of pressures and temperatures are also reported and agree with our computational findings.

Graphical abstract: Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases

Supplementary files

Article information

Article type
Communication
Submitted
21 Sep 2012
Accepted
14 Feb 2013
First published
07 Mar 2013

Energy Environ. Sci., 2013,6, 1158-1163

Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases

C. E. Wilmer, O. K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A. Sarjeant, R. Q. Snurr and J. T. Hupp, Energy Environ. Sci., 2013, 6, 1158 DOI: 10.1039/C3EE24506C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements