Issue 42, 2013

Facile fabrication of mesoporous iron modified Al2O3nanoparticles pillared montmorillonite nanocomposite: a smart photo-Fenton catalyst for quick removal of organic dyes

Abstract

A mesoporous iron modified Al2O3 nanoparticle pillared montmorillonite nanocomposite (mesoporous Fe/APM nanocomposite) was synthesized by using sodium exchanged montmorillonite by cation-exchange, gallery-templated synthesis and impregnation method. Formation of Al2O3 nanoparticles (Al2O3 NPs) having average particle size 5.20–6.50 nm within montmorillonite, formation of mesoporous Al2O3 NPs pillared montmorillonite (mesoporous APM) from montmorillonite and formation of a mesoporous Fe/APM nanocomposite signifies the present investigation. The roles of ammonia, CTAB, octyl amine and calcination temperature for fabrication of mesoporous Fe/APM nanocomposite were highly significant. Ammonia was used for post-synthesis treatment, which helped in the formation of micellar assemblies in the interlayer space. The materials were characterized by different techniques such as N2 adsorption–desorption study, which demonstrated the mesoporosity of the material. A transmission electron microscopy (TEM) image proves the morphology and size of the Al2O3 NPs and mesoporous Fe/APM nanocomposites. X-ray diffraction technique (XRD) describes the formation of the pillaring of the Al2O3 NPs within montmorillonite (APM). It has been noted that pure montmorillonite is a micro/mesoporous material. But after pillaring of Al2O3 NPs within the montmorillonite, mesoporosity developed, which is the vital aspect of present investigation. It was observed that the mesoporous Fe/APM nanocomposite has high photo-Fenton activity towards degradation of organic dyes such as acid blue (AB) and reactive blue (RB). Nearly 100% degradation took place within 30 minutes with high concentration of dye (500 mg L−1) by mesoporous 5 Fe/APM nanocomposite under ambient conditions. Small particle sizes of nanocomposite, quick reduction of Fe(III) and mesoporosity are the key points for proficient degradation of AB and RB.

Graphical abstract: Facile fabrication of mesoporous iron modified Al2O3 nanoparticles pillared montmorillonite nanocomposite: a smart photo-Fenton catalyst for quick removal of organic dyes

Article information

Article type
Paper
Submitted
18 Jul 2013
Accepted
08 Aug 2013
First published
09 Aug 2013

Dalton Trans., 2013,42, 15139-15149

Facile fabrication of mesoporous iron modified Al2O3 nanoparticles pillared montmorillonite nanocomposite: a smart photo-Fenton catalyst for quick removal of organic dyes

A. C. Pradhan, G. B. B. Varadwaj and K. M. Parida, Dalton Trans., 2013, 42, 15139 DOI: 10.1039/C3DT51952J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements