Issue 41, 2013

Effects of position (α or β) and linker heteroatom (O or S) of substituent on the photophysicochemical behavior of poly(oxyethylene) substituted ZnPcs and assessment of J-aggregation or protonation using TD-DFT computations

Abstract

A series of zinc phthalocyanines (ZnPcs) tetra-substituted with 1,3-di[2-(2-ethoxyethoxy)ethoxy]-2-propanol (1a) or 1,3-di[2-(2-ethoxyethoxy)ethoxy]-2-propanethiol (1b) at peripheral (β) (6a–b) and non-peripheral (α) (7a–b) positions have been synthesized and characterized. The spectroscopic, photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation) properties of these newly synthesized phthalocyanines have been investigated in DMSO. The effects of the position of the substituents on the phthalocyanine skeleton and the nature of the linker heteroatom on their spectroscopic, photophysical and photochemical properties have been determined. The quenching behavior of the zinc phthalocyanines by 1,4-benzoquinone has been studied in DMSO. All of the zinc(II) Pc complexes (6a–b and 7a–b) showed similar electronic absorption spectra in various solvents (chloroform, dichloromethane, DMF, DMSO, THF and toluene). However, complex 7a gave an extra red-shifted band at 742 nm in chloroform and dichloromethane. DFT and TD-DFT computations were performed on the model structures (8a–d, pp-8a–d and 9a–d) to find out the cause of the extra red-shifted Q band (J-type aggregation or protonation of the Pc ring). The computational results showed that monoprotonation of a meso nitrogen atom leads to the formation of this extra band. Photophysical and photochemical measurements indicated that these newly synthesized ZnPc derivatives are promising candidates for use as photosensitizers in the application of PDT.

Graphical abstract: Effects of position (α or β) and linker heteroatom (O or S) of substituent on the photophysicochemical behavior of poly(oxyethylene) substituted ZnPcs and assessment of J-aggregation or protonation using TD-DFT computations

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2013
Accepted
27 Jul 2013
First published
29 Jul 2013

Dalton Trans., 2013,42, 14892-14904

Effects of position (α or β) and linker heteroatom (O or S) of substituent on the photophysicochemical behavior of poly(oxyethylene) substituted ZnPcs and assessment of J-aggregation or protonation using TD-DFT computations

M. M. Ayhan, G. Altınbaş Özpınar, M. Durmuş and A. G. Gürek, Dalton Trans., 2013, 42, 14892 DOI: 10.1039/C3DT51549D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements