Issue 24, 2013

Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes

Abstract

Bifunctional Au-loaded Fe3O4@C composite microspheres were controllably synthesized by coating of Au nanoparticles (NPs) on the surface of the poly(diallyldimethylammonium chloride) (PDDA) functionalized Fe3O4@C microspheres. The amount of Au loading can be effectively tuned by altering the feeding amounts of solution Au NPs or further growth. The obtained Au-loaded Fe3O4@C composite microspheres exhibit both superior surface-enhanced Raman scattering (SERS) sensitivity and catalytic degradation activity for organic dyes. The SERS signal intensity of methylene blue (MB) distinctly enhances with the increase of Au loading, which endows increased Raman ‘hot spots’ and provides a significant enhancement of the Raman signal through electromagnetic (EM) field enhancements. Furthermore, the catalytic experiments of the Fe3O4@C@Au composite microspheres with the highest Au loading demonstrate that the model organic dye of MB molecules could be degraded within 10 min and the catalytic activity could be recovered without sharp activity loss in six runs, which indicates their superior catalytic degradation activity. The reason could be mainly ascribed to the synergistic effects of small size of Au NPs, the good adsorption behavior of carbon layers and the excellent dispersivity of the composite microspheres induced by the sandwiched carbon layers. The results indicate that the bifunctional Au-loaded Fe3O4@C composite microspheres could be served as promising materials in wastewater treatment.

Graphical abstract: Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2013
Accepted
17 Mar 2013
First published
19 Mar 2013

Dalton Trans., 2013,42, 8597-8605

Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes

Z. Gan, A. Zhao, M. Zhang, W. Tao, H. Guo, Q. Gao, R. Mao and E. Liu, Dalton Trans., 2013, 42, 8597 DOI: 10.1039/C3DT50341K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements