Issue 11, 2013

Rational design of [Co(acacen)L2]+inhibitors of protein function

Abstract

Cobalt(III) Schiff base complexes, such as [Co(acacen)L2]+, inhibit the function of Zn(II)-dependent proteins through dissociative exchange of the axial ligands with key histidine residues of the target protein. Consequently the efficacy of these compounds depends strongly on the lability of the axial ligands. A series of [Co(acacen)L2]+ complexes with various axial ligands was investigated using DFT to determine the kinetics and thermodynamics of ligand exchange and hydrolysis. Results showed excellent agreement with experimental data, indicating that axial ligand lability is determined by several factors: pKa of the axial ligand, the kinetic barrier to ligand dissociation, and the relative thermodynamic stability of the complexes before and after exchange. Hammett plots were constructed to determine if the kinetics and thermodynamics of exchange can be modulated by the addition of an electron-withdrawing group (EWG) to either the axial ligand itself or to the equatorial acacen ligand. Results predict that addition of an EWG to the axial ligand will shift the kinetics and thermodynamics so as to promote axial ligand exchange, while addition of an EWG to acacen will decrease axial ligand lability. These investigations will aid in the design of the next generation of [Co(acacen)L2]2+, allowing researchers to develop new, more effective inhibitors.

Graphical abstract: Rational design of [Co(acacen)L2]+ inhibitors of protein function

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2012
Accepted
19 Dec 2012
First published
22 Jan 2013

Dalton Trans., 2013,42, 4002-4012

Rational design of [Co(acacen)L2]+ inhibitors of protein function

L. M. Matosziuk, R. J. Holbrook, L. M. Manus, M. C. Heffern, M. A. Ratner and T. J. Meade, Dalton Trans., 2013, 42, 4002 DOI: 10.1039/C2DT32565A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements