Issue 25, 2013

Exceptionally high lactide polymerization activity of zirconium complexes with bridged diketiminate ligands

Abstract

A cyclohexanediyl-bridged, bis(N-xylyl) diketiminate ligand, (±)-C6H10(nacnacXylH)2, LH2 (Xyl = 2,6-dimethylphenyl), was obtained from the reaction of [(2,6-dimethylphenyl)amino]-pent-3-en-2-one first with Meerwein's salt, then with (±)-cyclohexanediamine. The reaction of the ligand with Zr(NMe2)4 yielded LZr(NMe2)2. Protonation of the remaining diamide ligands with EtOH or [H2NMe2]Cl yielded LZr(OEt)2 and LZrCl2, respectively. The latter complex was also obtained by the reaction of LH2 first with nBuLi and then with ZrCl4(THF)2. The dichloride complex yielded LZr(OEt)2 and LZrMe2 upon reaction with NaOEt or MeLi/AlMe3, respectively. X-ray diffraction studies showed a trans-configuration of the ancillary ligands in LZrCl2 and LZrMe2, and a cis-configuration in LZr(NMe2)2 and LZr(OEt)2. LZr(OEt)2 was tested as a catalyst for the polymerization of rac-lactide. Kinetic investigations yielded a rate law first order in catalyst and monomer and a rate constant k = 14(1) L mol−1 s−1, the latter being orders of magnitude higher than typical activities for group 4 complexes in lactide polymerization. Analyses of the obtained polymer revealed an atactic polymer and broad polymer molecular weight distributions with sizeable fractions of cyclic oligomers. The influence of contaminants on the polymerization activity was examined: while lactic acid deactivates the catalyst, addition of up to 1 equiv. of water or para-toluenesulfonic acid revitalized catalysts not showing maximum activity.

Graphical abstract: Exceptionally high lactide polymerization activity of zirconium complexes with bridged diketiminate ligands

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2012
Accepted
14 Sep 2012
First published
18 Sep 2012

Dalton Trans., 2013,42, 9376-9387

Exceptionally high lactide polymerization activity of zirconium complexes with bridged diketiminate ligands

I. El-Zoghbi, T. J. J. Whitehorne and F. Schaper, Dalton Trans., 2013, 42, 9376 DOI: 10.1039/C2DT31761C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements