Jump to main content
Jump to site search

Issue 23, 2013
Previous Article Next Article

Polymers for electronics and spintronics

Author affiliations


This critical review is devoted to semiconducting and high spin polymers which are of great scientific interest in view of further development of the organic electronics and the emerging organic spintronic fields. Diversified synthetic strategies are discussed in detail leading to high molecular mass compounds showing appropriate redox (ionization potential (IP), electron affinity (EA)), electronic (charge carrier mobility, conductivity), optoelectronic (electroluminescence, photoconductivity) and magnetic (magnetization, ferromagnetic spin interactions) properties and used as active components of devices such as n- and p-channel field effect transistors, ambipolar light emitting transistors, light emitting diodes, photovoltaic cells, photodiodes, magnetic photoswitches, etc. Solution processing procedures developed with the goal of depositing highly ordered and oriented films of these polymers are also described. This is completed by the description of principal methods that are used for characterizing these macromolecular compounds both in solution and in the solid state. These involve various spectroscopic methods (UV-vis-NIR, UPS, pulse EPR), electrochemistry and spectroelectrochemistry, magnetic measurements (SQUID), and structural and morphological investigations (X-ray diffraction, STM, AFM). Finally, four classes of polymers are discussed in detail with special emphasis on the results obtained in the past three years: (i) high IP, (ii) high |EA|, (iii) low band gap and (iv) high spin ones.

Graphical abstract: Polymers for electronics and spintronics

Back to tab navigation

Article information

15 Jul 2013
First published
13 Sep 2013

Chem. Soc. Rev., 2013,42, 8895-8999
Article type
Review Article

Polymers for electronics and spintronics

P. Bujak, I. Kulszewicz-Bajer, M. Zagorska, V. Maurel, I. Wielgus and A. Pron, Chem. Soc. Rev., 2013, 42, 8895
DOI: 10.1039/C3CS60257E

Social activity

Search articles by author