Issue 12, 2013

Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output

Abstract

Circular dichroism (CD) spectroscopy is one of the most useful techniques for the stereochemical analysis of chiral biopolymers and fine chemicals. It has become invaluable for the assignment of the absolute configuration, the study of conformational isomers, and the determination of racemization kinetics of CD active chiral compounds. Molecular interactions between a nonracemic chiral substrate and a chromophoric, CD-silent probe that is achiral or exists as a racemic mixture of rapidly interconverting enantiomeric conformations or configurations can induce a strong, characteristic chiroptical readout. A covalent or noncovalent binding event that coincides with a well-defined asymmetric induction process can effectively imprint the chiral information of the substrate on the stereodynamic sensor and thus generate intense Cotton effects in the UV region of the latter. The probe can thus function as a stereochemical reporter unit and analysis of the CD spectrum often provides accurate information about the absolute configuration and enantiomeric composition of the substrate used. In this review, recent developments in circular dichroism analysis of chiral compounds with stereodynamic probes are described and particular emphasis is given to sensor design, chiral induction processes and applications scope.

Graphical abstract: Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output

Article information

Article type
Review Article
Submitted
03 Dec 2012
First published
13 Mar 2013

Chem. Soc. Rev., 2013,42, 5408-5424

Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output

C. Wolf and K. W. Bentley, Chem. Soc. Rev., 2013, 42, 5408 DOI: 10.1039/C3CS35498A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements