Issue 4, 2013

Metal coordination in photoluminescent sensing

Abstract

Coordination chemistry plays an essential role in the design of photoluminescent probes for metal ions. Metal coordination to organic dyes induces distinct optical responses which signal the presence of metal species of interest. Luminescent lanthanide (Ln3+) and transition metal complexes of d6, d8 and d10 configurations often exhibit unique luminescence properties different from organic dyes, such as high quantum yield, large Stokes shift, long emission wavelength and emission lifetimes, low sensitivity to microenvironments, and can be explored as lumophores to construct probes for metal ions, anions and neutral species. In this review, the design principles and coordination chemistry of metal probes based on mechanisms of PeT, PCT, ESIPT, FRET, and excimer formation will be discussed in detail. Particular attention will be given to rationales for the design of turn-on and ratiometric probes. Moreover, phosphorescent probe design based on Ln3+ and d6, d8 and d10-metal complexes are also presented via discussing certain factors affecting the phosphorescence of these metal complexes. A survey of the latest progress in photoluminescent probes for identification of essential metal cations in the human body or toxic metal cations in the environment will be presented focusing on their design rationales and sensing behaviors. Metal complex-based photoluminescent probes for biorelated anions such as PPi, and neutral biomolecules ATP, NO, and H2S will be discussed also in the context of their metal coordination-related sensing behaviors and design approaches.

Graphical abstract: Metal coordination in photoluminescent sensing

Article information

Article type
Review Article
Submitted
31 Aug 2012
First published
18 Jan 2013

Chem. Soc. Rev., 2013,42, 1568-1600

Metal coordination in photoluminescent sensing

Z. Liu, W. He and Z. Guo, Chem. Soc. Rev., 2013, 42, 1568 DOI: 10.1039/C2CS35363F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements