Issue 3, 2013

One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes

Abstract

Carbohelicenes are a class of fascinating chiral helical molecules which have a rich history in chemistry. Over a period of almost 100 years, chemists have developed many methods to prepare them in a racemic or in a non-racemic form. They also possess a series of interesting chiral, physical, electronic and optical properties. However, their utilization in chemistry or chemistry-related fields has rarely appeared in a detailed and comprehensive review. It is the purpose of this review to collect fundamental applications and functions involving carbohelicenes in various disciplines such as in materials science, in nanoscience, in biological chemistry and in supramolecular chemistry. From the numerous synthetic methodologies reported up to now, carbohelicenes and their derivatives can be tailor-made for a better involvement in several subfields. Among those domains are: nanosciences, chemosensing, liquid crystals, molecular switches, polymers, foldamers, supramolecular materials, molecular recognition, conductive and opto-electronic materials, nonlinear optics, chirality studies and asymmetric synthesis. Helicene chemistry is now at a developmental stage, where sufficient application data are now collected and are extremely useful. They provide many more ideas for setting up the basis for future innovative applications.

Graphical abstract: One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes

Article information

Article type
Review Article
Submitted
09 Apr 2012
First published
15 Nov 2012

Chem. Soc. Rev., 2013,42, 1051-1095

One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes

M. Gingras, Chem. Soc. Rev., 2013, 42, 1051 DOI: 10.1039/C2CS35134J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements