Issue 41, 2013

Unified approach to multipolar polarisation and charge transfer for ions: microhydrated Na+

Abstract

Electrostatic effects play a large part in determining the properties of chemical systems. In addition, a treatment of the polarisation of the electron distribution is important for many systems, including solutions of monatomic ions. Typically employed methods for describing polarisable electrostatics use a number of approximations, including atom-centred point charges and polarisation methods that require iterative calculation on the fly. We present a method that treats charge transfer and polarisation on an equal footing. Atom-centred multipole moments describe the charge distribution of a chemical system. The variation of these multipole moments with the geometry of the surrounding atoms is captured by the machine learning method kriging. The interatomic electrostatic interaction can be computed using the resulting predicted multipole moments. This allows the treatment of both intra- and interatomic polarisation with the same method. The proposed method does not return explicit polarisabilities but instead, predicts the result of the polarisation process. An application of this new method to the sodium cation in a water environment is described. The performance of the method is assessed by comparison of its predictions of atomic multipole moments and atom–atom electrostatic interaction energies to exact results. The kriging models are able to predict the electrostatic interaction energy between the ion and all water atoms within 4 kJ mol−1 for any of the external test set Na+(H2O)6 configurations.

Graphical abstract: Unified approach to multipolar polarisation and charge transfer for ions: microhydrated Na+

Supplementary files

Article information

Article type
Paper
Submitted
29 Jul 2013
Accepted
05 Sep 2013
First published
05 Sep 2013

Phys. Chem. Chem. Phys., 2013,15, 18249-18261

Unified approach to multipolar polarisation and charge transfer for ions: microhydrated Na+

M. J. L. Mills, G. I. Hawe, C. M. Handley and P. L. A. Popelier, Phys. Chem. Chem. Phys., 2013, 15, 18249 DOI: 10.1039/C3CP53204F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements