Proton-bound dimers of 1-methylcytosine and its derivatives: vibrational and NMR spectroscopy†
Abstract
Vibrational spectroscopy and NMR demonstrate that the proton-bound dimer of 1-methylcytosine, 1, has an unsymmetrical structure at room temperature. In the gas phase, investigation of isolated homodimer 1 reveals five fundamental NH vibrations by IR Multiple Photon Dissociation (IRMPD) action spectroscopy. The NH⋯N stretching vibration between the two ring nitrogens exhibits a frequency of 1570 cm−1, as confirmed by examination of the proton-bound homodimers of 5-fluoro-1-methycytosine, 2, and of 1,5-dimethylcytosine, 3, which display absorptions in the same region that disappear upon deuterium substitution. 13C, and 15N NMR of the solid iodide salt of 1 confirm the nonequivalence of the two rings in the anhydrous proton-bound homodimer at room temperature. IRMPD spectra of the three possible heterodimers also show NH⋯N stretches in the same domain, and at least one of the heterodimers, the proton-bound dimer of 1,5-dimethylcytosine with 1-methylcytosine, exhibits two bands suggestive of the presence of two tautomers close in energy.