Topological characterization of crystalline ice structures from coordination sequences
Abstract
Topological properties of crystalline ice structures are studied by considering ring statistics, coordination sequences, and topological density of different ice phases. The coordination sequences (number of sites at topological distance k from a reference site) have been obtained by direct enumeration until at least 40 coordination spheres for different ice polymorphs. This allows us to study the asymptotic behavior of the mean number of sites in the k-th shell, Mk, for high values of k: Mk ∼ ak2, a being a structure-dependent parameter. Small departures from a strict parabolic dependence have been studied by considering first and second differences of the series {Mk} for each structure. The parameter a ranges from 2.00 for ice VI to 4.27 for ice XII, and is used to define a topological density for these solid phases of