Issue 19, 2013

Synthesis of low-cost, rubbery amphiphilic comb-like copolymers and their use in the templated synthesis of mesoporous TiO2 films for solid-state dye-sensitized solar cells

Abstract

Low-cost, rubbery amphiphilic comb-like copolymers consisting of hydrophobic poly(lauryl methacrylate) (PLMA) and hydrophilic poly(oxyethylene methacrylate) (POEM) were synthesized via one-step free radical polymerization. The synthesis of PLMA–POEM copolymers was confirmed using Fourier transform infra-red spectroscopy (FT-IR), 1H-nuclear magnetic resonance (1H-NMR) and gel permeation spectroscopy (GPC). The PLMA–POEM copolymers were used as a structure-directing agent for the formation of anatase mesoporous TiO2 films. Careful adjustment of the precursor and polymer molecular weight (MW) was made to systematically vary the TiO2 structure and its effect on the performances of solid-state dye-sensitized solar cells (ssDSSCs). The use of a low MW polymer resulted in a worm-like structure with smaller pores, whereas an aggregated honeycomb-like structure with bimodal pores was obtained for the high MW system, as characterized by scanning electron microscopy (SEM), grazing incidence small-angle X-ray scattering (GI-SAXS) and N2 adsorption–desorption measurement. An efficiency of 4.2% was obtained at 100 mW cm−2 when using 2 μm-thick TiO2 film prepared with a high MW copolymer. The higher efficiency was due to better pore filling of the solid electrolyte and improved light scattering properties. By using a layer-by-layer method, the efficiency was further improved to 5.0% at 7 μm thickness, which was greater than that of commercially available paste (3.9%).

Graphical abstract: Synthesis of low-cost, rubbery amphiphilic comb-like copolymers and their use in the templated synthesis of mesoporous TiO2 films for solid-state dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2012
Accepted
11 Mar 2013
First published
25 Mar 2013

Phys. Chem. Chem. Phys., 2013,15, 7345-7353

Synthesis of low-cost, rubbery amphiphilic comb-like copolymers and their use in the templated synthesis of mesoporous TiO2 films for solid-state dye-sensitized solar cells

D. J. Kim, S. J. Kim, D. K. Roh and J. H. Kim, Phys. Chem. Chem. Phys., 2013, 15, 7345 DOI: 10.1039/C3CP44308F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements