Issue 4, 2013

Computational 17O-NMRspectroscopy of organic acids and peracids: comparison of solvation models

Abstract

We examine several computational strategies for the prediction of the 17O-NMR shielding constants for a selection of organic acids and peracids in aqueous solution. In particular, we consider water (the solvent and reference for the chemical shifts), hydrogen peroxide, acetic acid, lactic acid and peracetic acid. First of all, we demonstrate that the PBE0 density functional in combination with the 6-311+G(d,p) basis set provides an excellent compromise between computational cost and accuracy in the calculation of the shielding constants. Next, we move on to the problem of the solvent representation. Our results confirm the shortcomings of the Polarizable Continuum Model (PCM) in the description of systems susceptible to strong hydrogen bonding interactions, while at the same time they demonstrate its usefulness within a molecular-continuum approach, whereby PCM is applied to describe the solvation of the solute surrounded by some explicit solvent molecules. We examine different models of the solvation shells, sampling their configurations using both energy minimizations of finite clusters and molecular dynamics simulations of bulk systems. Hybrid molecular dynamics simulations, in which the solute is described at the PM6 semiempirical level and the solvent by the TIP3P model, prove to be a promising sampling method for medium-to-large sized systems. The roles of solvent shell size and structure are also briefly discussed.

Graphical abstract: Computational 17O-NMR spectroscopy of organic acids and peracids: comparison of solvation models

Article information

Article type
Paper
Submitted
29 Aug 2012
Accepted
14 Nov 2012
First published
19 Nov 2012

Phys. Chem. Chem. Phys., 2013,15, 1130-1140

Computational 17O-NMR spectroscopy of organic acids and peracids: comparison of solvation models

A. Baggioli, O. Crescenzi, M. J. Field, F. Castiglione and G. Raos, Phys. Chem. Chem. Phys., 2013, 15, 1130 DOI: 10.1039/C2CP43021E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements