Issue 20, 2013

A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature

Abstract

A rare sty type microporous metal–organic framework, Cu2(FDDI) (ZJU-25; H4FDDI = tetramethyl 5,5′-(9H-fluorene-2,7-diyl)diisophthalate acid), was solvothermally synthesized and structurally characterized. With open metal sites and suitable pore space for their interactions with methane molecules, ZJU-25a exhibits absolute methane storage of 180 cm3(STP) cm−3 at room temperature and 35 bar, enabling it to be one of the very few porous MOFs whose methane storage capacities have met and/or approached the DOE target of 180 cm3(STP) cm−3 for material-based methane storage.

Graphical abstract: A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature

Supplementary files

Article information

Article type
Communication
Submitted
06 Dec 2012
Accepted
25 Jan 2013
First published
28 Jan 2013

Chem. Commun., 2013,49, 2043-2045

A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature

X. Duan, J. Yu, J. Cai, Y. He, C. Wu, W. Zhou, T. Yildirim, Z. Zhang, S. Xiang, M. O'Keeffe, B. Chen and G. Qian, Chem. Commun., 2013, 49, 2043 DOI: 10.1039/C3CC38765H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements