Issue 16, 2013

Applications of voltammetric ion selective electrodes to complex matrices

Abstract

The practical application of two different voltammetric ion selective electrodes (VISE) to measure ion activity in complex solutions has been explored. 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF) microcrystals adhered to an electrode surface act as a low selectivity voltammetric ion sensor. Resistance drop effects and pH artifacts were minimised by the addition of an “innocent” supporting electrolyte (buffer) to the analyte solution. In this format, addition of an ionophore to improve selectivity resulted in a reduction in current magnitude, due to competition for the ion. In contrast, voltammetry of a thin film containing a redox active species, electrolyte, ionophore and membrane solvent provides a highly selective ion sensor. Choice of ionophore was shown to affect the upper concentration detection limit. Use of ionic liquids as a combined membrane solvent and electrolyte was demonstrated. Methods to attach both VISE types to low-cost screen-printed electrodes have been explored. Various potential referencing techniques were also investigated. Both the microcrystal and thin film VISEs could be used to determine ion activity in complex solutions, as demonstrated in seawater, beverages, plasma and whole blood. Dissolved oxygen does not need to be removed, as it does not affect the response. However calibration methods are important for sensor accuracy and issues relating to electrode fouling must be addressed.

Graphical abstract: Applications of voltammetric ion selective electrodes to complex matrices

Supplementary files

Article information

Article type
Paper
Submitted
08 May 2013
Accepted
21 Jun 2013
First published
24 Jun 2013

Anal. Methods, 2013,5, 3840-3852

Applications of voltammetric ion selective electrodes to complex matrices

A. R. Harris, J. Zhang, R. W. Cattrall and A. M. Bond, Anal. Methods, 2013, 5, 3840 DOI: 10.1039/C3AY40769A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements