Issue 17, 2013

Rapid detection of endosulfan by a molecularly imprinted polymer microsphere modified quartz crystal microbalance

Abstract

A highly selective and sensitive quartz crystal microbalance (QCM) fabricated by mixing with polyvinyl chloride and molecularly imprinted polymer microspheres (MIPMs) immobilized in situ on a piezoelectric quartz crystal (PQC) chip as a recognition element for rapid endosulfan detection in drinking water and milk samples. Based on our previous studies, we investigated the performances of the MIPMs in situ modified QCM (MIPMs-QCM). The surface microstructure of the uniform mono-layer MIPMs on a PQC chip was characterized by scanning electron microscope (SEM). It remained relatively stable within 10–20 min. The specificity of the MIPMs-QCM was also investigated by using a series of concentrations of endosulfan and structurally related analogs, which showed good selectivity and specificity for the recognition of endosulfan. Analysis by MIPMs-QCM sensor responded in the presence of different concentrations of endosulfan and demonstrated a good linear correlation over 10 to 40 ng mL−1 (y (Hz) = 30.83lg x (ng mL−1) − 26.32, R = 0.9856), and 40 to 1280 ng mL−1 (y (Hz) = 93.79lg x (ng mL−1) − 120.40, R = 0.9980), respectively. The lowest detection limit (LDL) was 5.59 ng mL−1 (S/N = 3). It could be repeated six times and stored for 6 months. Detection of endosulfan in water and milk samples was observed with recoveries of 96.0–104.1% and 101.8–108.0% respectively. The developed MIPMs-QCM is a reliable method for analysis of endosulfan with simple operation, good selectivity, and is inexpensive and reusable.

Graphical abstract: Rapid detection of endosulfan by a molecularly imprinted polymer microsphere modified quartz crystal microbalance

Article information

Article type
Paper
Submitted
27 Apr 2013
Accepted
09 Jun 2013
First published
10 Jun 2013

Anal. Methods, 2013,5, 4442-4447

Rapid detection of endosulfan by a molecularly imprinted polymer microsphere modified quartz crystal microbalance

N. Liu, J. Han, Z. Liu, L. Qu and Z. Gao, Anal. Methods, 2013, 5, 4442 DOI: 10.1039/C3AY40697K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements