Issue 17, 2013

Determination of volatile organic compounds in water samples using membrane-solid phase microextraction (M-SPME) (headspace version)

Abstract

The results of a study on the use of membrane-solid phase microextraction (M-SPME) for sampling volatile organic compounds (VOCs) from the headspace above the liquid medium are presented. The sampled VOCs were subsequently quantified by gas chromatography (GC). Two systems were compared in this study, i.e. a novel two-phase sorption system (M-SPME), and a commercial fibre. Headspace sampling using SPME was optimized with respect to sample temperature, extraction time and the content of a salting-out agent (independently vs. each parameter). Under the optimized conditions, extraction with the M-SPME fibre yielded a limit of detection (LOD) of 0.011 µg L−1. This value is comparable with LOD achieved with a commercial fibre under its own optimum conditions. However, using the M-SPME sample preparation procedure developed in this work, a broad linear range from 0.5 to 100 µg L−1 was obtained, while isolation with a commercial fibre resulted in a linear range up to ca. 25 µg L−1 only. Finally, the suitability of the novel fibre for VOC determination was proved by conducting measurements on real samples.

Graphical abstract: Determination of volatile organic compounds in water samples using membrane-solid phase microextraction (M-SPME) (headspace version)

Article information

Article type
Paper
Submitted
14 Dec 2012
Accepted
31 May 2013
First published
31 May 2013

Analyst, 2013,138, 5099-5106

Determination of volatile organic compounds in water samples using membrane-solid phase microextraction (M-SPME) (headspace version)

A. Spietelun, Ł. Marcinkowski, A. Kloskowski and J. Namieśnik, Analyst, 2013, 138, 5099 DOI: 10.1039/C3AN36851C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements