Issue 23, 2013

A hybrid FLIM-elastic net platform for label free profiling of breast cancer

Abstract

We report a label-free fluorescence lifetime profiling strategy to classify breast cancer cells, MCF10CA1h (malignant), MCF10A (nonmalignant), and MCF10AneoT (premalignant) in different stages of malignancy. Fluorescence Lifetime Imaging Microscopy (FLIM) was used to record the lifetime of autofluorescence of endogenous flavin in MCF10 cells in different stages of malignancy. Predominant differences in lifetimes ascertained by multi-exponential fitting curves can be attributed to the different forms of flavin protein; flavin mononucleotide (FMN), free flavin adenine dinucleotide (FAD), semiquinone, and bound FAD. A lifetime map of the metabolite was derived from the contribution of the lifetime of each metabolite by iterative reconvolution fitting of the Time Correlated Single Photon Counting (TCSPC) decay curves. Lifetime maps were constructed by mapping the average lifetime values pixel by pixel using MATLAB. The FLIM image (150 × 150 pixels) of each cell was extracted, resized and centered into 100 × 100 pixels using the nearest neighbor algorithm. Principal Component Analysis (PCA) in conjunction with Elastic net Analysis (EnA) was then used to classify the different stages of MCF10 cell lines based on average lifetime values. The EnA model provided an excellent classification of the cells at different stages of tumorigenesis yielding 100% accuracy.

Graphical abstract: A hybrid FLIM-elastic net platform for label free profiling of breast cancer

Supplementary files

Article information

Article type
Paper
Submitted
02 Jun 2013
Accepted
10 Sep 2013
First published
16 Sep 2013

Analyst, 2013,138, 7127-7134

A hybrid FLIM-elastic net platform for label free profiling of breast cancer

N. P. Damayanti, A. P. Craig and J. Irudayaraj, Analyst, 2013, 138, 7127 DOI: 10.1039/C3AN01097J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements