Issue 15, 2013

Sensitivity of activatable reactive oxygen species probes by fluorescence spectroelectrochemistry

Abstract

We have developed a new analytical method of evaluating activatable fluorescent probes for ROS detection using integrated fluorescence spectroelectrochemistry. The Tafel formalism was applied to describe the process of the probes' oxidation under electrochemical conditions and identify a novel parameter defined as the threshold oxidation potential. This potential can serve as an approximation to the equilibrium potential and can be utilized for determining the sensitivity of a probe to oxidation. Based upon the measured values of threshold potentials, the order of sensitivity towards oxidation among several commonly used probes was determined to be the following (from highest to lowest): 2,7-dihydrodichlorofluorescein > dihydroethidium > dihydrorhodamine 123 > dihydrorhodamine 6G. The presented approach opens up a new direction in synthesizing and screening novel ROS probes with a well-defined sensitivity for in vitro and in vivo applications.

Graphical abstract: Sensitivity of activatable reactive oxygen species probes by fluorescence spectroelectrochemistry

Supplementary files

Article information

Article type
Paper
Submitted
07 Mar 2013
Accepted
04 May 2013
First published
08 May 2013

Analyst, 2013,138, 4363-4369

Sensitivity of activatable reactive oxygen species probes by fluorescence spectroelectrochemistry

S. T. Wang, N. G. Zhegalova, T. P. Gustafson, A. Zhou, J. Sher, S. Achilefu, O. Y. Berezin and M. Y. Berezin, Analyst, 2013, 138, 4363 DOI: 10.1039/C3AN00459G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements