Issue 27, 2012

A study of hydrogel composites containing pH-responsive doubly crosslinked microgels

Abstract

Recently, our group established a new approach for preparing injectable hydrogels using vinyl-functionalised pH-responsive microgel particles [Liu et al., Soft Matter, 2011, 7, 4696]. pH-responsive microgels swell when the pH approaches the pKa of the particles. Liu et al. used inter-particle crosslinking of vinyl-functionalised microgel particles to prepare hydrogels composed of doubly crosslinked microgels (D-microgels). Here, we combine vinyl-functionalised microgels with added, small-molecule, crosslinkers to prepare high modulus D-microgel/hydrogel (H-X) composites for the first time. The vinyl-functionalised microgel particles used were poly(EA/MAA/BDD)/GM; where, EA MAA, BDD and GM are ethyl acrylate and methacrylic acid, 1,4-butanediol diacrylate and glycidyl methacrylate, respectively. Two added crosslinkers were used to demonstrate the versatility of our approach. They were ethyleneglycol dimethacrylate (EGD) and N,N′-methylenebisacrylamide (BA). We compare the data to control hydrogel composites prepared using non-vinyl-functionalised singly crosslinked microgels (S-microgels). All of the composites showed pH-dependent swelling behaviours and mechanical properties. The storage modulus value for the as-made D-microgel/H-EGD composite was 0.12 MPa and is the highest reported to date for a hydrogel containing pH-responsive microgels. The as-made control S-microgel/H-X composites had high ductilities. Dynamic rheology data were used to determine the effects of vinyl functionalisation on the composite mechanical properties. All of the composites exhibited pH-dependent swelling and a “breathing in” transition occurred. The swollen D-microgel/H-X composites retained their high modulus values upon swelling; although, their ductilities decreased. Because we used two different crosslinkers and pH-responsive microgels containing carboxylic acid groups, the method introduced here for preparing high modulus hydrogel composites should be widely applicable.

Graphical abstract: A study of hydrogel composites containing pH-responsive doubly crosslinked microgels

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2012
Accepted
29 May 2012
First published
12 Jun 2012

Soft Matter, 2012,8, 7234-7242

A study of hydrogel composites containing pH-responsive doubly crosslinked microgels

C. Supasuteekul, A. H. Milani, J. M. Saunders, S. Lally, T. Freemont and B. R. Saunders, Soft Matter, 2012, 8, 7234 DOI: 10.1039/C2SM25649E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements