Issue 38, 2012

The effect of geometry on the adhesive behavior of bio-inspired fibrils

Abstract

Inspired by the special climbing ability of geckos and insects, the effects of geometry, including the end-shape and size, on the adhesion features of bio-inspired fibrils, are investigated. It is found that, the adhesion force of a mushroom-shaped fibril in perfect contact with a rigid substrate decreases with the increase of the peeling angle, but it will increase with an increasing flange thickness at a determined peeling angle. With the same contact length, the mushroom-shaped fibril can achieve much larger adhesion forces than the cylindrical or spatular one due to a larger effective region of the cohesive zone. The effect of the shaft width of the mushroomed-shaped fibril on the adhesion force with and without interfacial defects is also considered, and the results are further compared qualitatively with the experimental ones. A critical contact length for the mushroom-shaped fibril is further found, above which the adhesion force attains a maximum. For a multi-fibril structure, the phenomenon of almost equal load sharing for each fibril is verified numerically, which is consistent with the existing experimental observation. All the results in this paper should be helpful for the understanding of the micro-adhesion mechanism of biological adhesive systems and the design of novel adhesives.

Graphical abstract: The effect of geometry on the adhesive behavior of bio-inspired fibrils

Article information

Article type
Paper
Submitted
25 Mar 2012
Accepted
24 Jul 2012
First published
13 Aug 2012

Soft Matter, 2012,8, 9864-9869

The effect of geometry on the adhesive behavior of bio-inspired fibrils

Z. Peng and S. Chen, Soft Matter, 2012, 8, 9864 DOI: 10.1039/C2SM26390D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements