Issue 28, 2012

Collective dynamics of confined rigid spheres and deformable drops

Abstract

The evolution of linear arrays of rigid spheres and deformable drops in a Poiseuille flow between parallel walls is investigated to determine the effect of particle deformation on the collective dynamics in confined particulate flows. We find that linear arrays of rigid spheres aligned in the flow direction exhibit a particle-pairing instability and are unstable to lateral perturbations. Linear arrays of deformable drops also undergo the pairing instability but also exhibit additional dynamical features, including formation of transient triplets, cascades of pair-switching events, and the eventual formation of pairs with equal interparticle spacing. Moreover, particle deformation stabilizes drop arrays to lateral perturbations. These pairing and alignment phenomena are qualitatively explained in terms of hydrodynamic far-field dipole interactions that are insensitive to particle deformation and quadrupole interactions that are deformation induced. We suggest that quadrupole interactions may underlie the spontaneous formation of droplet strings in confined emulsions under shear [Phys. Rev. Lett., 2001, 86, 1023.].

Graphical abstract: Collective dynamics of confined rigid spheres and deformable drops

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2012
Accepted
31 May 2012
First published
19 Jun 2012

Soft Matter, 2012,8, 7495-7506

Collective dynamics of confined rigid spheres and deformable drops

P. J. A. Janssen, M. D. Baron, P. D. Anderson, J. Blawzdziewicz, M. Loewenberg and E. Wajnryb, Soft Matter, 2012, 8, 7495 DOI: 10.1039/C2SM25812A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements