Issue 21, 2012

Radial-velocity profile along the surface of evaporating liquid droplets

Abstract

The deposit pattern of drying liquid droplets has a close relationship with the radial-velocity profile along the droplet surface. In this paper, the surface temperature of the droplet is first solved numerically and approximated by a simple analytical form, and an analytical expression for the radial-velocity of the surface flow is then obtained by using the lubrication analysis developed by Hu and Larson. The theoretical analysis indicates that the outward surface flow will be reduced by the thermal Marangoni stress along the surface. When the Marangoni number is below a critical value, MaCrit, all the surface liquid will move outward and a dense, ring-like deposit will be formed. When above MaCrit, a stagnation point, within which the surface flow is inward and beyond which the surface flow is outward, will appear on the droplet surface. In such case, the particles transported to the surface beyond the stagnation point will move to the droplet edge to form the ring deposit, and the others will deposit on the central region of the droplet. Numerical results indicate that the critical Marangoni number decreases in a power law with the contact angle. The theory for the radial-velocity of the surface flow will be helpful to predict and control the deposit patterns from the drying droplets.

Graphical abstract: Radial-velocity profile along the surface of evaporating liquid droplets

Article information

Article type
Paper
Submitted
12 Feb 2012
Accepted
19 Mar 2012
First published
19 Apr 2012

Soft Matter, 2012,8, 5797-5803

Radial-velocity profile along the surface of evaporating liquid droplets

X. Xu, J. Luo and D. Guo, Soft Matter, 2012, 8, 5797 DOI: 10.1039/C2SM25319D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements