Issue 17, 2012

Semiflexible filament networks viewed as fluctuating beam-frames

Abstract

We present a new method combining structural and statistical mechanics to study the entropic elasticity of semiflexible filament networks. We view a filament network as a frame structure and use structural mechanics to determine its static equilibrium configuration under applied loads in the first step. To account for thermal motion around this static equilibrium state, we then approximate the potential energy of the deformed frame structure up to the second order in kinematic variables and obtain a deformation-dependent stiffness matrix characterizing the flexibility of the network. Using statistical mechanics, we then evaluate the partition function, free energy and thermo-mechanical properties of the network in terms of the stiffness matrix. We show that penalty methods commonly used in finite elements to account for constraints, are applicable even when statistical and structural mechanics are combined in our method. We apply our framework to understand the expansion, shear, uniaxial tension and compression behavior of some simple filament networks. We are able to capture the stress-stiffening behavior due to filament reorientation and stretching out of thermal fluctuations, as well as the reversible stress-softening behavior due to filament buckling. Finally, we apply our method to square networks and show how their mechanical behavior is different from triangular networks with similar filament density and persistence length.

Graphical abstract: Semiflexible filament networks viewed as fluctuating beam-frames

Article information

Article type
Paper
Submitted
28 Oct 2011
Accepted
24 Feb 2012
First published
08 Mar 2012

Soft Matter, 2012,8, 4664-4674

Semiflexible filament networks viewed as fluctuating beam-frames

T. Su and P. K. Purohit, Soft Matter, 2012, 8, 4664 DOI: 10.1039/C2SM07058H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements