Issue 4, 2012

Tuning the properties of pH-responsive and redox sensitive hollow particles and gels using copolymer composition

Abstract

Biodegradable pH-responsive hollow polymer particles offer excellent potential for preparing high performance biomaterials. Unfortunately, the established methods for pH-responsive hollow particle preparation are laborious and difficult to scale up. Recently, we reported that pH-responsive hollow particles could be prepared using solvent evaporation [Bird et al., Chem. Commun., 2011, 47, 1443]. Here, we greatly expand and extend that work by investigating four new pH-responsive hollow particle systems based on poly(MMA-co-MAA) (methyl methacrylate and methacrylic acid) and poly(EA-co-MAA) (EA is ethyl acrylate). The hollow polymer particles were crosslinked with cystamine after preparation to give redox sensitive, biodegradable, hollow particles. For one of the systems a remarkable particle-in-hollow particle morphology was observed. The pH-triggered swelling of the hollow particles was studied and pH-triggered release of a model solute from these new hollow particles was demonstrated. The dispersions formed physical gels in the physiological pH range. The hollow particle physical gels had elastic modulus values as high as 4000 Pa at low total polymer concentrations. The swelling properties of the particles and the mechanical properties of the gels were tuneable using copolymer composition. The particles and gels could be disassembled with glutathione. The properties of these new gel-forming dispersions imply they have good potential for future application as injectable gels for regenerative medicine.

Graphical abstract: Tuning the properties of pH-responsive and redox sensitive hollow particles and gels using copolymer composition

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2011
Accepted
04 Nov 2011
First published
21 Nov 2011

Soft Matter, 2012,8, 1047-1057

Tuning the properties of pH-responsive and redox sensitive hollow particles and gels using copolymer composition

R. Bird, T. Freemont and B. R. Saunders, Soft Matter, 2012, 8, 1047 DOI: 10.1039/C1SM06507F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements