Issue 10, 2012

Reactivity studies on [Cp′MnX(thf)]2: manganese amide and polyhydride synthesis

Abstract

The sterically encumbered 1,2,4-(Me3C)3C5H2 (Cp′) ligand allows the synthesis of stable high spin mono(cyclopentadienyl) manganese complexes [Cp′MnX(thf)]2 (X = Cl, Br, I; 1-X). Thermal stabilities of 1-X toward ligand redistribution to [Cp2′Mn] (2) and MnX2 depend on the bridging halide ligand. The kinetic stability of 1-I in solution even at elevated temperatures is noteworthy. Complexes 1 are useful starting materials for further functionalizations. Metathesis of 1-Cl with [LiN(SiMe3)2(OEt2)]2 yields the 13 valence-electron (VE) complex, [Cp′MnN(SiMe3)2] (3), while the manganese polyhydride cluster, [{Cp′Mn}4{MnH6}], was formed in the reaction of 1-I and KHBEt3. The 17 VE [MnH6]4− core of 4 is effectively shielded by four high spin [Cp′Mn]+ units. Magnetic susceptibility studies on 4 suggest weak electron exchange coupling between the spin carriers, but the spin state of the central [MnH6]4− fragment remained ambiguous. Therefore, the electronic structure of 4 was also analyzed by broken symmetry (BS) DFT calculations, which provided strong evidence for a low spin [MnH6]4− unit in agreement with previous spectrochemical studies performed on [FeH6]4−.

Graphical abstract: Reactivity studies on [Cp′MnX(thf)]2: manganese amide and polyhydride synthesis

Supplementary files

Article information

Article type
Edge Article
Submitted
10 Jun 2012
Accepted
05 Jul 2012
First published
17 Jul 2012

Chem. Sci., 2012,3, 2972-2979

Reactivity studies on [Cp′MnX(thf)]2: manganese amide and polyhydride synthesis

M. Maekawa, M. Römelt, C. G. Daniliuc, P. G. Jones, P. S. White, F. Neese and M. D. Walter, Chem. Sci., 2012, 3, 2972 DOI: 10.1039/C2SC20737K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements