Issue 31, 2012

Mechanical properties of binary DPPC/DPPS bilayers

Abstract

In this work, we studied how the lipid composition and ionic strength of an aqueous solution affect the mechanical properties of the lipid bilayer. The interfacial tension, the bending modulus, the Gaussian curvature modulus and the bilayer curvature energy of the lipid bilayer were studied by molecular dynamics simulation. For this purpose, the lipid bilayer was modelled as a binary symmetric lipid bilayer of DPPC (DiPalmitoylPhosphatidylCholine) and DPPS (DiPalmitoylPhosphatidylSerine) at different molar ratios of these two lipids in the absence of salt and in presence of 0.5 N NaCl in aqueous solution. The results of the simulations in absence of salt showed how an increase in the DPPS concentration of the lipid bilayer strongly affects most of its mechanical properties, including the lateral pressure across the membrane, interfacial tension, or the bending modulus of the lipid bilayer. However, in the presence of 0.5 N NaCl, the interfacial tension of the lipid bilayer becomes independent of the lipid composition (in the range of 15–70% DPPS), behavior that may have notable implications from a biological point of view, due to the contribution that this property may provide to the stability of biological membranes.

Graphical abstract: Mechanical properties of binary DPPC/DPPS bilayers

Article information

Article type
Paper
Submitted
13 Jul 2012
Accepted
28 Sep 2012
First published
01 Oct 2012

RSC Adv., 2012,2, 11743-11750

Mechanical properties of binary DPPC/DPPS bilayers

J. J. L. Cascales, S. D. O. Costa, A. Garro and R. D. Enriz, RSC Adv., 2012, 2, 11743 DOI: 10.1039/C2RA21977H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements