Issue 32, 2012

CVD-grown TiO2 particles as light scattering structures in dye-sensitized solar cells

Abstract

Chemical vapour deposition (CVD) at atmospheric pressure, using TiCl4 as a precursor, was used to grow nanostructured TiO2 films on glass substrates. At relatively low temperatures (∼245 °C) and using relatively high reactant concentrations, different nano-morphologies of TiO2 were formed simultaneously, such as spheres, nanowires and mesoporous structures. The TiO2 spheres were successfully applied as light-scattering particles in dye-sensitized solar cells, either by direct deposition onto electrodes in the reactor, or by preparation of a printing paste from the deposited particles. For dye-sensitized solar cells using the organic dye D35 as sensitizer and a cobalt-complex based redox electrolyte, a solar cell efficiency of 4.4% was obtained using a 5 μm transparent mesoporous TiO2 layer. Addition of a 5 μm light-scattering CVD-particle film increased the efficiency by 22% to 5.4%, which was similar to the result obtained with an equally thick commercially available light-scattering film (5.3%). Longer electron lifetime was found using CVD-based films, which is attributed to the presence of more traps in the bulk of the material.

Graphical abstract: CVD-grown TiO2 particles as light scattering structures in dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2012
Accepted
09 Oct 2012
First published
09 Oct 2012

RSC Adv., 2012,2, 12278-12285

CVD-grown TiO2 particles as light scattering structures in dye-sensitized solar cells

M. Pazoki, N. Taghavinia, Y. Abdi, F. Tajabadi, G. Boschloo and A. Hagfeldt, RSC Adv., 2012, 2, 12278 DOI: 10.1039/C2RA21361C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements