Issue 12, 2012

A new energy conversion technology joining electrochemical and physical principles

Abstract

We report a new energy conversion technology joining electrochemical and physical principles. This technology can realize the fuel cell function but built on a different scientific principle. The device consists of a single component which is a homogenous mixture of ceria composite with semiconducting materials, e.g. LiNiCuZn-based oxides. The test devices with hydrogen and air operation delivered a power density of 760 mW cm−2 at 550 °C. The device has demonstrated a multi-fuel flexibility and direct alcohol and biogas operations have delivered 300–500 mW cm−2 at the same temperature. Device physics reveal a key principle similar to solar cells realizing the function based on an effective separation of electronic and ionic conductions and phases within the single-component. The component material multi-functionalities: ion and semi-conductions and bi-catalysis to H2 or alcohol (methanol and ethanol) and air (O2) enable this device realized as a fuel cell.

Graphical abstract: A new energy conversion technology joining electrochemical and physical principles

Supplementary files

Article information

Article type
Communication
Submitted
03 Dec 2011
Accepted
31 Mar 2012
First published
03 May 2012

RSC Adv., 2012,2, 5066-5070

A new energy conversion technology joining electrochemical and physical principles

B. Zhu, R. Raza, Q. Liu, H. Qin, Z. Zhu, L. Fan, M. Singh and P. Lund, RSC Adv., 2012, 2, 5066 DOI: 10.1039/C2RA01234K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements