Issue 4, 2012

An improved grafting technique for producing imprinted thin film composite beads

Abstract

Thin molecularly imprinted polymer (MIP) films were grafted from porous silica using immobilized azoinitiators in the absence or presence of RAFT mediated control or by controlled radical polymerization using immobilized iniferters. The resulting composites were compared in terms of film thickness, the grafted layer homogeneity, effect of different support morphologies and their chromatographic performance regarding enantioselectivity, and efficiency. Film thickness was controlled either kinetically by interrupted polymerization or stoichiometrically based on complete monomer conversion. Thus, L-phenylalanine anilide (L-PA) imprinted poly(MAA-co-EDMA) silica composites prepared by the former technique using the iniferter modified supports exhibited heterogeneous distribution of grafted polymer as shown by the absence of correlations between the pore system parameters and the graft density. This contrasted with the linear correlations observed by both the kinetic and stoichiometric grafting techniques based on azoinitiator or RAFT modified supports indicating that these exhibit homogeneous grafted films. These results were corroborated by chromatographic tests. Whereas the iniferter composites produced by interrupted polymerization were not capable of racemic resolution and generally showed very low or non-existent enantioselectivity, the azo-composites showed a pronounced enantioselectivity which was strongly dependent on the film thickness, monomer dilution, the RAFT/initiator ratio and the method of grafting. Hence, composites prepared by exhaustive polymerization under dilute conditions using high RAFT/initiator ratios displayed strongly enhanced chromatographic performance in terms of retentivity and enantioselectivity.

Graphical abstract: An improved grafting technique for producing imprinted thin film composite beads

Supplementary files

Article information

Article type
Paper
Submitted
14 Nov 2011
Accepted
30 Dec 2011
First published
06 Feb 2012

Polym. Chem., 2012,3, 1033-1042

An improved grafting technique for producing imprinted thin film composite beads

M. R. Halhalli, C. S. A. Aureliano, E. Schillinger, C. Sulitzky, M. M. Titirici and B. Sellergren, Polym. Chem., 2012, 3, 1033 DOI: 10.1039/C2PY00544A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements