Volume 108, 2012

Computational methods for studies of semiconductor quantum dots and rings

Abstract

The derivation of an effective-mass Hamiltonian for studies of electron–hole pairs (multiexcitons) confined in semiconductor heterostructures such as quantum dots and quantum rings is presented. The obtained Schrödinger equation, describing the dynamics of the electrons and holes trapped in the quantum heterostructures, are solved at the Hartree-Fock self-consistent field, configuration interaction, and coupled-cluster levels. The computational methods, which are familiar from quantum chemical studies on molecules, have been generalized for simultaneously considering electrons and holes at the same level of theory. The methods and implementation of the ab initio computational methods including methods to calculate radiative recombination rates of multiexcitons and exciton relaxation rates due to phonon-multiexciton interaction are described. The applicability of the methods is demonstrated by studying multiexciton energies, photoluminescence spectra, and phonon relaxation rates of electrons trapped in quantum dots, quantum rings, and concentric quantum double rings. The calculations on the quantum dots and quantum rings show the importance of considering charge-carrier correlation effects in studies of energy levels and photoluminescence spectra, only the results obtained at highly correlated levels agree well with available experimental data. The calculations are also found to provide information about the dynamics of the charge carriers confined in the quantum heterostructures that supports novel interpretations of the photoluminescence experiments.

Article information

Article type
Review Article
First published
20 Mar 2012

Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2012,108, 96-125

Computational methods for studies of semiconductor quantum dots and rings

D. Sundholm and T. Vänskä, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2012, 108, 96 DOI: 10.1039/C2PC90004A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements