Rational substrate and enzyme engineering of transketolase for aromatics†
Abstract
The uses of 3-formylbenzoic acid and 4-formylbenzoic acid as molecular probes along with previous and new transketolase mutants revealed the factors governing the rate of reaction between transketolase and aromatic aldehydes. The novel α,α-dihydroxyketones were produced at 15 to 30-fold higher yields and up to 250-fold higher specific activities with D469T TK when compared to those obtained for benzaldehyde.