Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 23, 2012

A one-step screening process for optimal alignment of (soft) colloidal particles

Author affiliations

Abstract

We developed nanostructured gradient wrinkle surfaces to establish a one-step screening process towards optimal assembly of soft and hard colloidal particles (microgel systems and silica particles). Thereby, we simplify studies on the influence of wrinkle dimensions (wavelength, amplitude) on particle properties and their alignment. In a combinatorial experiment, we optimize particle assembly regarding the ratio of particle diameter vs. wrinkle wavelength and packing density and point out differences between soft and hard particles. The preparation of wrinkle gradients in oxidized top layers on elastic poly(dimethylsiloxane) (PDMS) substrates is based on a controlled wrinkling approach. Partial shielding of the substrate during plasma oxidation is crucial to obtain two-dimensional gradients with amplitudes ranging from 7 to 230 nm and wavelengths between 250 and 900 nm.

Graphical abstract: A one-step screening process for optimal alignment of (soft) colloidal particles

Supplementary files

Article information


Submitted
11 Sep 2012
Accepted
03 Oct 2012
First published
09 Oct 2012

Nanoscale, 2012,4, 7338-7345
Article type
Communication

A one-step screening process for optimal alignment of (soft) colloidal particles

S. Hiltl, J. Oltmanns and A. Böker, Nanoscale, 2012, 4, 7338 DOI: 10.1039/C2NR32710D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements