Issue 23, 2012

Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?

Abstract

Microwave-assisted syntheses of colloidal nanocrystals (NCs), in particular CdSe quantum dots (QDs), have gained considerable attention due to unique opportunities provided by microwave dielectric heating. The extensive use of microwave heating and the frequently suggested specific microwave effects, however, pose questions about the role of the electromagnetic field in both the formation and quality of the produced QDs. In this work a one-pot protocol for the tunable synthesis of monodisperse colloidal CdSe NCs using microwave dielectric heating under carefully controlled conditions is introduced. CdSe QDs are fabricated using selenium dioxide as a selenium precursor, 1-octadecene as a solvent and reducing agent, cadmium alkyl carboxylates or alkyl phosphonates as cadmium sources, 1,2-hexadecanediol to stabilize the cadmium complex and oleic acid to stabilize the resulting CdSe QDs. Utilizing the possibilities of microwave heating technology in combination with accurate online temperature control the influence of different reaction parameters such as reaction temperature, ramp and hold times, and the timing and duration of oleic acid addition have been carefully investigated. Optimum results were obtained by performing the reaction at 240 °C applying a 5 min ramp time, 2 min hold time before oleic acid addition, 90 s for oleic acid addition, and a 5 min hold time after oleic acid addition (8.5 min overall holding at 240 °C). By using different cadmium complexes in the microwave protocol CdSe QDs with a narrow size distribution can be obtained in different sizes ranging from 0.5–4 nm by simply changing the cadmium source. The QDs were characterized by TEM, HRTEM, UV-Vis, and photoluminescence methods and the size distribution was monitored by SAXS. Control experiments involving conventional conductive heating under otherwise identical conditions ensuring the same heating and cooling profiles, stirring rates, and reactor geometries demonstrate that the electromagnetic field has no influence on the generated CdSe QDs. The resulting CdSe NCs prepared using either conductive or microwave dielectric heating exhibited the same primary crystallite size, shape, quantum yield and size distribution regardless of the heating mode.

Graphical abstract: Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?

Article information

Article type
Paper
Submitted
24 Aug 2012
Accepted
02 Oct 2012
First published
09 Oct 2012

Nanoscale, 2012,4, 7435-7442

Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?

M. M. Moghaddam, M. Baghbanzadeh, A. Keilbach and C. O. Kappe, Nanoscale, 2012, 4, 7435 DOI: 10.1039/C2NR32441E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements