Issue 12, 2012

Cell motility, morphology, viability and proliferation in response to nanotopography on silicon black

Abstract

Knowledge of cells' interactions with nanostructured materials is fundamental for bio-nanotechnology. We present results for how individual mouse fibroblasts from cell line NIH3T3 respond to highly spiked surfaces of silicon black that were fabricated by maskless reactive ion etching (RIE). We did standard measurements of cell viability, proliferation, and morphology on various surfaces. We also analyzed the motility of cells on the same surfaces, as recorded in time lapse movies of sparsely populated cell cultures. We find that motility and morphology vary strongly with nano-patterns, while viability and proliferation show little dependence on substrate type. We conclude that motility analysis can show a wide range of cell responses e.g. over a factor of two in cell speed to different nano-topographies, where standard assays, such as viability or proliferation, in the tested cases show much less variation of the order 10–20%.

Graphical abstract: Cell motility, morphology, viability and proliferation in response to nanotopography on silicon black

Supplementary files

Article information

Article type
Paper
Submitted
06 Oct 2011
Accepted
12 Mar 2012
First published
21 May 2012

Nanoscale, 2012,4, 3739-3745

Cell motility, morphology, viability and proliferation in response to nanotopography on silicon black

J. M. Łopacińska, C. Grădinaru, R. Wierzbicki, C. Købler, M. S. Schmidt, M. T. Madsen, M. Skolimowski, M. Dufva, H. Flyvbjerg and K. Mølhave, Nanoscale, 2012, 4, 3739 DOI: 10.1039/C2NR11455K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements