Issue 9, 2012

Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation

Abstract

Pt-based materials have been widely used as electrocatalysts in direct methanol fuel cells (DMFCs) due to their significant activity for methanol oxidation as well as their superior poison tolerance. In this study, a reduced graphene oxide (RGO) supported FePt alloy electrocatalyst is successfully synthesized by a facile in situ co-reduction route. The microstructure, composition and morphology of the synthesized materials are systematically investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It is shown that the as-formed FePt nanoparticles with a size of 4 nm are well spread out on the RGO sheets and as a result, re-stacking of the RGO sheets is effectively inhibited. Their catalytic performance for electrocatalytic oxidation of methanol is investigated by cyclic voltammetry and amperometric method, which indicate that the RGO/FePt catalyst exhibits much higher catalytic activity and stability than the RGO/Pt nanocomposites. It is proposed that the addition of Fe, which increases the number of Pt active sites, is responsible for the improved catalytic performance. This result implies that the prepared RGO/FePt nanocomposites have great potential applications in DMFC.

Graphical abstract: Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation

Article information

Article type
Paper
Submitted
23 Feb 2012
Accepted
08 Jun 2012
First published
13 Jun 2012

New J. Chem., 2012,36, 1774-1780

Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation

Z. Ji, G. Zhu, X. Shen, H. Zhou, C. Wu and M. Wang, New J. Chem., 2012, 36, 1774 DOI: 10.1039/C2NJ40133A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements